Regularized Sparse Kernel SFA with Decorrelation Filtering For Separating Correlated Sources
نویسنده
چکیده
Advances in digital image processing were increased in the past few years. Blind source separation is one of the important research area with numerous applications in signal processing, image processing, telecommunication and speech recognition. In this paper the Blind Source Separation is performed using Slow Feature Analysis(SFA). It is necessary to use multivariate SFA instead of univariate SFA for separating multi-dimensional signals. This paper makes use of Regularized Sparse Kernel SFA(RSKSFA) instead of multivariate SFA and applies it to the problem of blind source separation in particular to image separation. Here the kernel trick is used in combination with sparsification to provide a powerful function class for large data sets. Sparsity is achieved by a novel matching pursuit approach that can be applied to other tasks as well. For small but complex data sets the kernel SFA approach leads to over-fitting and numerical instabilities. To enforce a stable solution, we introduce regularization to the SFA objective. If the original sources are correlated, it is not possible to achieve perfect separation. So apply a decorrelation filter on the image mixtures before applying SFA for separating the correlated sources. For SFA, when the number of mixtures is greater than or equal to the number of sources, the paper demonstrates how to determine the actual number of sources via regularization technique.
منابع مشابه
Regularized Sparse Kernel Slow Feature Analysis
This paper develops a kernelized slow feature analysis (SFA) algorithm. SFA is an unsupervised learning method to extract features which encode latent variables from time series. Generative relationships are usually complex, and current algorithms are either not powerful enough or tend to over-fit. We make use of the kernel trick in combination with sparsification to provide a powerful function...
متن کاملA Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland
Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...
متن کاملAdaptive decorrelation filtering for separation of co-channel speech signals from m>2 sources
The ADF algorithm for separating two signal sources by Weinstein, Feder, and Oppenheim is generalized for separation of co-channel speech signals from more than two sources. The system con guration, its accompanied ADF algorithm, and the choice of adaptation gain are derived. The applicability and limitation of the derived algorithm are also discussed. Experiments were conducted for separation ...
متن کاملGroup Sparse Recovery via the ℓ0(ℓ2) Penalty: Theory and Algorithm
In this work we propose and analyze a novel approach for recovering group sparse signals, which arise naturally in a number of practical applications. It is based on regularized least squares with an `(`) penalty. One distinct feature of the new approach is that it has the built-in decorrelation mechanism within each group, and thus can handle the challenging strong inner-group correlation. We ...
متن کاملReproducing Kernel Banach Spaces with the l1 Norm
Targeting at sparse learning, we construct Banach spaces B of functions on an input space X with the following properties: (1) B possesses an l norm in the sense that B is isometrically isomorphic to the Banach space of integrable functions on X with respect to the counting measure; (2) point evaluations are continuous linear functionals on B and are representable through a bilinear form with a...
متن کامل